|
In electrical engineering, a protective relay is a device designed to trip a circuit breaker when a fault is detected. The first protective relays were electromagnetic devices, relying on coils operating on moving parts to provide detection of abnormal operating conditions such as over-current, over-voltage, reverse power flow, over- and under- frequency. Microprocessor-based digital protection relays now emulate the original devices, as well as providing types of protection and supervision impractical with electromechanical relays. In many cases a single microprocessor relay provides functions that would take two or more electromechanical devices. By combining several functions in one case, numerical relays also save capital cost and maintenance cost over electromechanical relays. However, due to their very long life span, tens of thousands of these "silent sentinels" are still protecting transmission lines and electrical apparatus all over the world. An important transmission line or generator unit will have cubicles dedicated to protection, with many individual electromechanical devices, or one or two microprocessor relays. The theory and application of these protective devices is an important part of the education of an electrical engineer who specializes in power systems. The need to act quickly to protect circuits and equipment as well as the general public often requires protective relays to respond and trip a breaker within a few thousandths of a second. In these cases it is critical that the protective relays are properly maintained and regularly tested. ==Operation principles== Electromechanical protective relays operate by either magnetic attraction, or magnetic induction. Unlike switching type electromechanical relays with fixed and usually ill-defined operating voltage thresholds and operating times, protective relays have well-established, selectable and adjustable time/current (or other operating parameter) operating characteristics. Protection relays may use arrays of induction disks, shaded-pole magnets, operating and restraint coils, solenoid-type operators, telephone-relay contacts, and phase-shifting networks. Protective relays can also be classified by the type of measurement they make. A protective relay may respond to the magnitude of a quantity such as voltage or current. Induction types of relay can respond to the product of two quantities in two field coils, which could for example represent the power in a circuit. Although an electromechanical relay calculating the ratio of two quantities is not practical, the same effect can be obtained by a balance between two operating coils, which can be arranged to effectively give the same result.〔 Several operating coils can be used to provide "bias" to the relay, allowing the sensitivity of response in one circuit to be controlled by another. Various combinations of "operate torque" and "restraint torque" can be produced in the relay. By use of a permanent magnet in the magnetic circuit, a relay can be made to respond to current in one direction differently from in another. Such polarized relays are used on direct-current circuits to detect, for example, reverse current into a generator. These relays can be made bistable, maintaining a contact closed with no coil current and requiring reverse current to reset. For AC circuits, the principle is extended with a polarizing winding connected to a reference voltage source. Light weight contacts make for sensitive relays that operate quickly, but small contacts can't carry or break heavy currents. Often the measuring relay will trigger auxiliary telephone-type armature relays. In a large installation of electromechanical relays, it would be difficult to determine which device originated the signal that tripped the circuit. This information is useful to operating personnel to determine the likely cause of the fault and to prevent its re-occurrence. Relays may be fitted with a "target" or "flag" unit, which is released when the relay operates, to display a distinctive colored signal when the relay has tripped.〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「protective relay」の詳細全文を読む スポンサード リンク
|